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Pollinators, like most other animals, often face a tradeoff between increasing food uptake and minimising predation. An
earlier model suggests that social bees should be more likely than solitary bees to adopt riskier foraging strategies in order to
increase food uptake. In this paper, we extend this model by studying the effect of body size, in addition to sociality, on the
predation—intake rate tradeoff. When, following standard practice, we express the foraging strategies in terms of mortality
probability and net food uptake, we find that body size should have no effect on the foraging strategies of solitary bees.
Social bees, on the other hand, should change their foraging preferences according to their size. Small social bees should tend
to maximise food uptake, and large social bees to minimise mortality rate. Mortality, however, is the product of two terms:
the probability of suffering an attack and the probability of succumbing to it. Noting that larger bees are less susceptible
to succumb to a predation attempt than smaller bees, model predictions change when foraging strategies are expressed in
terms of exposure to predators. Following this second approach, exposure to predators should increase monotonically with
body size in solitary bees. In social bees it should reach a minimum for medium-sized bees. We conclude that both bee body

size and sociality should be considered when studying the effect of predators on resource use.

Pollinator insects are attacked by a suite of ambush predators
(crab spiders, assassin bugs, ambush bugs) while collecting
pollen and nectar at flowers, and several studies have shown
that bees are capable of detecting the presence of these
predators (Heiling and Herberstein 2004), and adjust their
foraging behaviour accordingly (Dukas 2001, Dukas and
Morse 2003, Gongalves-Souza et al. 2008). Thus, ambush
predator populations may affect pollinator reproductive
success directly through predation, but also indirectly —
inducing changes in foraging behaviour resulting in lower
foraging effectiveness.

By modifying pollinator foraging behaviour, ambush
predator populations may also affect plant reproductive
success (Higginson et al. 2010). On the one hand, patch
avoidance and/or increased flower inspection times result in
decreased flower visitation rates, sometimes accompanied by
reduced seed-set (Suttle 2003, Dukas 2005). On the other
hand, decreasing the number of visits per individual entails
higher levels of outcrossing at the expense of geitonogamy,
thus lowering the risk of potential inbreeding depression
(de Jong et al. 1993). Therefore, the response of pollinators
to spatiotemporal heterogeneity in predation risk has the
potential to affect plant community structure and composi-
tion. Where predators have been shown to affect plant fit-
ness through a decrease in pollinator visitation, this effect
has been mediated by changes in the foraging strategy of the
pollinators, which tend to avoid risky patches (Suttle 2003,

Gongalves-Souza et al. 2008), rather than by changes in
pollinator density.

To predict how pollinators react to variability in preda-
tion risk, and the extent to which predators may affect plant
community composition through their effects on pollinator
behaviour, we must first understand how pollinators trade
off intake rate for safety to maximise their expected fitness.
Because of the strong link between resource acquisition and
fitness in pollinating insects, pollinators have long been
used as model system to test predictions of optimal foraging
theory (Heinrich 1979, Pyke 1979, Dreisig 1995), and the
number of experimental studies dealing with how pollina-
tors detect and avoid predators has steadily increased over
the last decade. The issue of how pollinating insects tradeoff
foraging intake for predation risk, however, has received little
attention despite its importance in most systems so far stud-
ied (Verdolin 2006).

A model developed by Houston et al. (1988), hereafter
referred to as the HSK model, addresses the question of why
social bees tend to maximise foraging efficiency, rather than
intake rate. Because the model considers the effect of worker
mortality on the foraging strategy of social bees, it can easily
be extended to study the tradeoff between intake and safety.
A later model, developed by Clark and Dukas (1994) and
hereafter referred to as the CD model, illustrates how
Gadagkar’s (1990) ‘insurance effect’ can explain differences in
the foraging strategies of social and solitary bees. To do so,
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the model explores whether social and solitary bees differ
in their response to the tradeoff between intake rate and
safety. The CD model concludes that social bees should
adopt riskier foraging strategies because they may have
positive fitness even if they die prematurely, as other work-
ers may continue the brood rearing process, an option not
available to solitary species. Because of its original goal and
simplifying assumptions, it is difficult to envisage how the
CD model could be extended to answer complex ecologi-
cal questions, such as the effect of ambush predators on the
structure of pollination networks, or behavioural questions
concerning the mechanisms involved in predator detection
and avoidance.

In this paper, we build upon the CD model by removing
some of the more restrictive simplifications and explicitly con-
sidering the effect of body size on predator avoidance behav-
iour. We address the following questions: 1) should social and
solitary bees adopt different foraging strategies to solve the
conflicting demands of increasing intake rate and decreasing
predation risk? 2) Does body size affect the level of predation
risk adopted by foragers? If so, does it affect social and solitary
species similarly? Although most of our conclusions apply
to other pollinator groups, we restrict our model to bees.

Social bees

Bees make foraging trips to and from their nest. Mortality
risk per trip is denoted by W, and the average net food
uptake per trip by ¢,. The CD model assumes that there
is an unlimited season, with constant conditions and no
senescence. Although senescence can be included in the
model, this refinement has a very small effect on model
predictions (Appendix 1) and we deal with it no further.
With the model’s assumptions, the number of trips that
a bee is expected to complete in her lifetime is (1 —p )/,
(Clark and Dukas 1994).

For social bees, the CD model assumes that fitness is
maximised when individual workers maximise their total
expected lifetime food recovery. With this assumption, the
quantity that a social bee must maximise, W, (> in order
to maximise its fitness can be written as (Eq. 1 in Clark and

Dukas 1994)
1=,

t

(p( (1)

WCD,socia] =

For low predation rates (i, much lower than 1), the foraging
option maximizing fitness of social bees in the CD model is
the one maximizing @ /\L,.

Social bees — extended model in (1, ¢) phase space

Temperate social bees with an annual cycle typically found
new colonies at the beginning of the season. Colonies first
experience a phase of near exponential growth, during
which only workers are produced, and then switch to the
production of reproductive individuals. This type of colony
cycle is found in many primitively eusocial species such as
most bumblebees (Bombus) and some sweat bees (Halictus,
Lasioglossum) (Michener 1974). While the lifespan of
workers is much shorter than the season, the lifespan of
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the colony is roughly as long as the season (Heinrich 1979,
Kukuk and May 1991, Knerer 1992). With seasons of
finite duration, the reproductive success of a colony is an
increasing function of its size when it switches from pro-
ducing workers to reproductive individuals, and hence of
its growth rate during the exponential phase (Miiller and
Schmid-Hempel 1992). Following the HSK model, we will
therefore search for the foraging strategies that maximise
colony growth rate.

It is important to point out that the principle of colony-
growth maximisation probably applies to highly eusocial
bees as well (Houston et al. 1988), such as honeybees (4pis)
and stingless bees (Meliponini), in which colony growth rate
determines the number of reproductive offspring that can be
produced each season (Free and Williams 1975).

The first difference between our model and the origi-
nal CD model for social bees is therefore the use of colony
growth rate, rather than expected lifetime food harvest per
bee, as fitness measure. Note that, in the absence of senes-
cence, bees can maximise their expected lifetime food har-
vest following strategies associated with very low net intake
rates. This happens, for instance, when the exploitation of
a poor food source is virtually risk-free. When such food
sources exist, our model will make very different predictions
from the CD model.

How is colony growth rate maximised? The colony’s capi-
tal is the sum of two terms: the food resources stored in the
colony’s larder (pollen and nectar), and the resources that
have been invested in producing workers. Through foraging,
workers increase the colony’s food resources, but by exposing
themselves to predation risk they decrease the colony’s work-
force. The lifetime net contribution of a worker to colony’s
growth is hence the difference between two terms, represent-
ing the amount of resources it manages to bring to the colony
(referred to as Harvest in Eq. 2), and the amount of resources
that were invested in producing the worker, E — as these
resources leave the colony once the worker dies. The worker’s
contribution to colony growth rate is this amount divided by
the worker’s lifespan. With these considerations in mind, the
fitness function for social bees, W can be written as

social®

W, = Haed °F @
<L1fespan>

where terms in brackets represent expected values of the

corresponding variables.

The amount of resources that a bee is expected to provide
is the number of foraging trips she is expected to complete
in her lifetime times the amount of food brought to the
colony per trip, L, and (Lifespan) is the expected number
of trips times the average duration of each trip, which is
the number of flowers visited per trip times flower exploita-
tion time, t-L/@. Because the number of trips that a forager
is expected to complete through her lifetime is (1 —p)/W,,
Eq. 2 becomes

L Lx(1—p,)/u, —E
social tX(L/(p) < (1_u‘ )/let

Because the number of flowers visited per foraging trip
may change with bee size (Goulson et al. 2002), it will be
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convenient to work with the probability of mortality per
flower, W, and the average net food uptake per flower, ¢. (For
notational simplicity, we omit sub-indices in the variables
denoting mortality and expected net intake per flower visit.)
If the amount of resources that a bee brings to her nest at the
end of a foraging trip is denoted by L, then on average the
bee visits L/@ flowers per trip, and mortality per trip is
Mo=1-(1-p)" 4)
In terms of food uptake and mortality per flower, substitut-
ing Eq. 4 in Eq. 3 we obtain

B E_1-(1-p)"
Wsocial =1 X ll — I X W (5)

Expected fitness of social bees depends on body size through
E, investment per offspring. The explicit dependence of
fitness on body size is the second difference between our
model and the CD model. Note that, when the mortality
rate per flower visit is low, W is much smaller than 1, Eq. 5
can be replaced by its first-order Taylor development,

_9-uxE ©

social
t

|6

which is the fitness function derived in the HSK model.

Equation 6 can be used to study the effect of body
size on the optimal strategy of social bees. Let us assume
that bees are using a reference strategy S, = (W, @,). If given
the choice, should bees switch to a comparison strategy
S.= M, 92 If S, is associated with lower mortality and
higher food uptake per flower than S, the switch would
clearly lead to an increase in fitness. Likewise, if S_ is associ-
ated with higher mortality and lower food uptake than S,
then the bee should retain S, The question only becomes
interesting when one strategy has higher food uptake and
higher mortality than the other. Throughout this paper, we
will assume that u_>p and @.> @, (The fourth possible
scenario is obtained reversing the roles of S_ and S,.) Figure 1
shows the set of strategies that a large and a small bee should
prefer to S, = (0.001, 0.45). Throughout this paper, we use
2.5 mg as the size of an example small bee, and 150 mg
as the size of an example large bee (see Appendix 2 for
the choice of model parameters). Where 1_ is small and @,
large, both small and large bees prefer S_ (sector A: S, S; in
Fig. 1). Where p_ is large and @, small, they prefer S, (sector
C:S, S). In between, there are two regions, one where small
bees prefer S_and large bees S, (sector B: S, S,), and another
one where preferences are reversed (sector D: S, S). It is
clear from Fig. 1 that, for small bees, increases in mortality
are casily compensated by increases in food uptake. Large
bees, on the other hand, will only accept an increase in mor-
tality if it is accompanied by a very substantial increase in
food uptake.

In Fig. 1, the straight lines are lines of equal fitness for small
(near horizontal line) and large (steep line) bees. The slope of
the lines of equal fitness indicates the relative importance of
changes in food uptake and mortality for the choice of for-
aging strategies. Near-horizontal lines indicate that choices
between strategies are mainly determined by differences in
food uptake, very steep lines that mortality is determinant.

1.

0 A:small S, large S,

0.8 B: small S, large S, A .
Che C:small S, large S, Large bees
%) D: small S, large S,

S 0.61 B
2
= Small bees—
8 0.4/ '
% D Sr= (W, ¢r)
< 0.21 C

0.0 . . .

0.0000 0.0005 0.0010 0.0015 0.0020
Mortality, .

Figure 1. Optimal foraging strategies for small and large social
bees in (W, @) phase space. If bees have a choice between reference
strategy S, = (1, = 0.001, ¢, =0.45), represented by the black
circle, and an arbitrary comparison strategy S_= (1., @.), small
bees should choose S. when it lies above the solid line, and S,
otherwise. Large bees should choose the comparison strategy
when it lies above the dotted line. Each of the four sectors in which
the two straight lines divide the plane corresponds to a combina-
tion of foraging choices by small and large bees, as indicated in
the figure. Small social bees readily accept foraging options
with higher food uptake; large social bees are less likely to accept
foraging options with higher mortality. For small bees, E=5 mg,
L=2.5 mg; for large bees, E=380 mg, L=14 mg; t=10s.

The example of Fig. 1 can be generalised with the use of
fitness contour plots and lines of equal fitness. Figure 2a-b
shows the fitness contour plots for social bees. (Because
Eq. 5 and 6 yield almost identical predictions, in what
follows we use Eq. 6 for model analysis.) Lines of constant
fitness are nearly straight lines, evenly spaced, with slope E.
Because E, the cost of producing an offspring, increases with
body size, lines of equal fitness for social bees become pro-
gressively steeper as body size increases. For small bees, the
lines of equal fitness are almost horizontal and fitness is max-
imised essentially maximising net food uptake per flower.
For very large bees, the lines of equal fitness would become
almost vertical: fitness maximisation would be roughly
equivalent to minimisation of mortality per flower.

Figure 2c—d shows the contour plots for social bees
according to the CD model (Eq. 1). Because the CD model
is based on mortality and food uptake per trip, the two mod-
els are not directly comparable. Nevertheless, there is a dra-
matic change in the shape of the fitness functions. In the
CD model, lines of constant fitness are no longer parallel:
they are straight lines through the origin. According to the
CD model, the relative importance of mortality and food
uptake when choosing between the reference and a compari-
son strategy does not depend on bee size, but on the position
of the reference strategy. The relative importance of minimis-
ing mortality increases as we move from reference strategies
with low @ /|, ratios to reference strategies with high ¢/,
ratios.

Social bees — maintenance threshold

To study the ecological conditions allowing for the main-
tenance of bee populations, we define the maintenance
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Figure 2. Contour plots for the expected fitness of social bees as a function of net food uptake, ¢, and mortality rate, U, per flower. Upper
panels correspond to our fitness function (Eq. 5), lower panels to the CD model (Eq. 1). Panel (A) and (C) refer to small bees, (B) and (D)
to large bees. Within each panel, as we move from the lower-right to the upper-left section, lines represent the set of foraging strategies
leading to the production of 1, 5, 10, 20 and 50 offspring per worker. A scale change has been introduced in fitness functions to express
them in the same units (offspring produced). For small bees, E =5 mg, L =2.5 mg, T =4,750 s; for large bees, E =380 mg, L =14 mg,

T =247,000s;t=10s.

threshold, @*, as the minimal foraging uptake per flower
allowing for a positive growth rate. In the CD model, because
fitness is measured in units of resource provisioning per bee,
the minimum requirement for population viability is that
each worker obrtains, on average, at least sufficient resources
to produce a replacement worker, s0 @cp, oq,* is obtained
from the equation W, ., = E. Equation 5 is directly given
in terms of colony growth rate, so the viability condition in
this case, Q% is simply derived from W__ ., = 0. Needless
to say, these thresholds are overoptimistic, but they provide
convenient benchmarks for model comparison, and will
become important when we compare how social and solitary
bees respond to the mortality-intake trade-off. For realistic
values of mortality per flower, the maintenance thresholds
are obtained by solving for @ in the equations above and
linearising. We obtain

1
(p CD,social E 1 + E/L l.l (7)
— X Log
L E/L
(p*social =EX u (8)

The maintenance threshold predicted by the CD model
for social bees is more restrictive than the one predicted by
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our extended model, but differences are much greater for
small (23%) than for large bees (1%).

Social bees — extended model in (p, ¢) phase space

So far, we have assumed that mortality per flower, |1, and net
food uptake, @, are free model parameters. We refer to this
formulation as the ([, @) phase space. The main advantage
of working in the (U, @) phase space is that it minimises the
number of free parameters in the model. This is the formula-
tion used in the HSK and CD models. The disadvantage of
this formulation is that it obscures the relationship between
body size and expected fitness: mortality and net food uptake
per flower cannot be univocally assigned to a given environ-
ment or resource, because these variables are also affected by
phenotypic traits of the bees. This shortcoming is avoided if
we work in ‘(p, ¢) phase space’ — at the cost of introducing
extra parameters and making some restrictive assumptions
in the model. The transformation between the two formu-
lations is achieved defining ¢ as the gross food uptake per
flower and p as the “predator exposure” per flower. We define
p as the probability that a bee is attacked by a predator upon
landing on a flower, regardless of whether the bee manages
to escape. Net food uptake per flower, @, equals gross uptake,
0, minus metabolic cost, %. Flight metabolic cost in bees



increases with body size with an exponent of 0.7 (Darveau
et al. 2005), but, as shown below, model predictions are not
greatly affected by the shape of the relationship between
metabolic cost and body size, and it suffices to note that
metabolic cost increases with body size. Mortality, on the
other hand, decreases with body size because large bees are
less susceptible to predation (Dukas and Morse 2003, 2005).
We will assume that mortality rate is the product of two fac-
tors: the predator exposure, p, which will depend on the
type and abundance of predators associated with the flowers
where the bee chooses to forage, and the susceptibility of the
bee (probability of being captured upon attack), 6, which
will depend on its body size and other phenotypic traits.

In (¢, p) phase space, fitness of social bees can be
expressed as

_q)—x—chXE

social

)

t

and the equation for the lines of constant fitness becomes

0=%x+W, . XttpXoXE (10)
Essentially, then, the shift from (U, ¢) to (p, ¢) phase
space implies just a change in the slope of the boundary
between those strategies that are better or worse than a ref-
erence strategy. In (U, @) phase space, the slope equals E
and increases with bee body size. In (p, ¢) the slope equals
6 X E. This product could increase or decrease as body size
increases. Investment per offspring has been reported to
increase with body size, m, as m!!5 (Miiller et al. 2000).
Susceptibility, on the other hand, is bounded between 0 and
1. It is therefore likely to follow an inverse sigmoid func-
tion, being close to its maximum value for small bees and
close to 0 for large bees. If the relationship between suscep-
tibility and body mass is an inverse sigmoid function, then
the product 6 X E is bell shaped. Lines of equal fitness are
very shallow for very small (low E) and very large (low ©)
bees, and reach a maximum for intermediate body sizes. In
other words, for small and large social bees (shallow lines
of equal fitness) the optimal strategy lies close to the maximi-
sation of intake rate, and predator avoidance only becomes
an issue for social bees of intermediate size.

Solitary bees

We now turn to the foraging strategies of solitary bees. The
CD model assumes that solitary bees collect food through-
out the day, take it to the nests, and at the end of the day lay
a number of eggs on the food provision and close the nest. If
a bee makes N trips per day, the fitness contribution of a full
day’s foraging is supposed to be equal to the amount of food
harvested during the day, N ¢,. If; on the other hand, the
bee dies during the day before laying any egg, the food col-
lected through the day is wasted and does not increase the
bee’s fitness. With these assumptions, the expected fitness of
a solitary bee, Wep,solicary 18 (Eq. 4 in Clark and Dukas 1994)
N
—(1 L) TN X o,
1-(1—p,)

CDsolitary

(11)

The assumption that there is a linear relationship between
food gathered and fitness ignores that offspring come in dis-
crete quanta and a minimum amount of resources is required
to produce one offspring.

Solitary bees — extended model in
(n, ¢) phase space

In order to extend the CD model for solitary bees, we make
two modifications. First, we assume that there is a fixed cost
of producing an offspring, E. Second, we assume that bees
lay eggs whenever they have harvested enough resources
to feed a larva through its development, E. This is in fact
the strategy typically followed by solitary bees (Stephen
et al. 1969). For univoltine species, a bee’s expected fitness
is proportional to the number of eggs she manages to lay.
On average, a bee must visit E/¢ flowers before she can
lay an egg. The probability that the bee dies while provi-
sioning a cell is 1 —(1—p)¥®, and the number of eggs she is
expected to lay is therefore

_ (=W
solitary 1— (1 _ M-)E/(p

With this formulation, the fitness function of solitary bees
is very similar to the fitness function of social bees in the
CD model (Fig. 2c—d). In both cases (data for solitary bees
not shown), lines of equal fitness are straight lines through
the origin, so the results of the CD model for social bees apply
directly to solitary bees in the extended model, replacing
mortality and food uptake per flower for mortality and food
uptake per trip. In particular, solitary bees should select the
foraging options maximising @/U, and preference between
foraging options should be independent of bee size.

(12)

Solitary bees — maintenance threshold

The maintenance threshold for solitary bees in the extended
model is obtained assuming that each bee produces a single
offspring, W, ;... = 1. Assuming that mortality per flower
is sufficiently small to keep only the linear term in p, we
obtain

1
log(2)

XE Xu=1.44 XE Xu (13)

¢ *solitary =

Solitary bees — extended model in (p, ¢) phase space

As we have seen, solitary bees should select the foraging
strategy with the highest value of @/p. Consider a solitary
bee that must choose between foraging strategies associated
to parameters (L; =P, X0, @; =, —%) and (L, =p, X0,
©, =, — %), where % is the metabolic cost. The bee will
choose the former strategy if (¢, —)/(p, X ©) > (0, — %)/
(p, X ©) and the latter otherwise. Susceptibility cancels out
from the equation and the choice of foraging strategy
therefore depends on the comparison between (¢, —%)/p,
and (¢, —x)/p,. Solitary bees should strive to maximise
o/p= (o —x)/p.

Body size affects 7, and hence foraging choices. Figure 3
represent the set of comparison strategies, S. = (p., ¢.) that
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a large and a small solitary bee should prefer to the reference
strategy S, (p,=0.01, ¢,=1). If S_ has a higher predator
exposure than S, p.>p,, it will only be selected if it also
leads to a higher gross intake per flower, ¢ > ¢,. The increase
in intake per flower required to accept the comparison strat-
egy, S., however, is higher for small than for large solitary
bees. Increasing gross food uptake, ¢, will weight dispropor-
tionately in the foraging strategies of large solitary bees, and
minimising predator exposure, p, in the foraging strategies
of small solitary bees. Also, for bees of any size, increasing
gross food uptake becomes more and more important as the
metabolic cost of exploiting a flower, ), approaches the value
of its reward, ¢. This is because the lines of equal fitness for
solitary bees in (p, ¢) phase space are straight lines with inter-
cept ) (Fig. 3). As a result, if § — = 0, the line of equal fit-
ness is almost horizontal, corresponding to a situation where
any increase in reward value, A > 0, leads to an increase in
fitness — regardless of the change in predator exposure, Ap.

Comparison between social and
solitary bees

Comparing the foraging strategies of social and solitary
bees is easiest in (U, @) phase space. For solitary bees,
the optimal foraging strategy is the one that maximises
@/1. For social bees, on the other hand, optimal forag-
ing choices are size-dependent. In particular, very small
social bees should tend to maximise net food uptake per
flower, and very large social bees to minimise mortality
per flower. We now compare the optimal foraging strate-
gies of social and solitary bees of the same size. Let E be
the cost of rearing a bee. Bees cannot subsist on resources for
which /L <E (Eq. 8, 13), so we restrict our comparison to
strategies that lie above the @ = E line. For any reference

4

A:small S, large S,
B: small S,, large S, A

g C: small Sy, large S,
jfg D: small S, large S, Small bees
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[2]
S X
Ol Sr = (pr, 0r)
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Predator exposure, p

Figure 3. Optimal foraging strategies for small and large solitary
bees in (p, ¢) phase space. If bees have a choice between reference
strategy S, = (p,= 0.01, ¢, = 1.3), represented by the black circle,
and an arbitrary comparison strategy S_ = (p,, 0.), small bees should
choose S_ when it lies above the solid line, and S, otherwise. Large
bees should choose the comparison strategy when it lies above the
dotted line. Each of the four sectors in which the two straight lines
divide the plane corresponds to a combination of foraging choices
by small and large bees. Large solitary bees are more likely to adopt
strategies with high predator exposure than small solitary bees.
Metabolic cost per flower, %, equals 0.5 and 1 mg for small and
large bees, respectively.
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strategy S, above the @ =1 E line, the increase in net food
uptake AQ_ ;. that a social bee requires to accept an increase
in mortality AW, is smaller than the increase in net food
uptake AQ,;,,, that the solitary bee requires to accept the
same increase in mortality (Fig. 4). We therefore recover the
result obtained by Clark and Dukas (1994) with a qualifica-
tion: social bees will expose themselves to higher mortality
rates than solitary bees of the same size.

It is helpful to visualise these general results with a spe-
cific example, similar to the one proposed by Jones (2010).
Let us assume that bees can choose between a set of forag-
ing strategies, such that the predator exposure of a strategy
increases with the square of its gross food uptake:

p =0.005 X ¢? (14)
Small bee, E = 100 mg
10
solitary
/
s ° / social
© 6 // A .
Q
84 A
- T/ Or ¢=EXu
z B /
21/
/
0 T T - :
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Figure 4. Comparison of the optimal strategy of social and solitary
bees as a function of net food uptake, @, and mortality rate, i per
flower. Bee populations can only subsist on resources represented
by points above the solid line. If social bees have to choose between
strategy S, = (1L, = 0.01, @, = 4), (denoted by a black circle) and a
comparison strategy, S. = (I, ¢.), they will favour S_ only if it lies
above the line through S, with slope E (dotted line). Solitary bees,
on the other hand, will prefer the alternative resource if it lies above
the line joining S, to the origin (dashed line). The strategies favoured
by social bees but not by solitary bees are therefore those in sector A
between the dotted and dashed lines, and the strategies favoured by
solitary bees but not by social bees are those in sector B. For a given
body size, social bees are expected to take higher risks than solitary
bees. The two panels differ in the value of E:E =100 mg in the top
panel and E = 200 mg in the bottom panel. The discrepancy between
the strategies favoured by social and solitary bees (total area of A
and B sectors) decreases as body size (and therefore E) increases.



where p must be bounded in the interval [0, 1]. For this
particular example, we will make specific assumptions con-
cerning the allometric relationships between body size and
the model parameters. Susceptibility should decrease with
body size, being close to G, for very small bees and to 0
for very large bees. We therefore set

(5=%><|:l+tanh(2—0.025><m):| (15)

With this choice, the susceptibility of a bee decreases to 0.5
for m =80 mg and to 0.25 for m =100 mg. Investment
per offspring increases as m'!> (Miiller et al. 2006). To fit
this power relationship to our choice of parameter values for
small and large bees, we set

E=12Xm!b (16)

Metabolic cost increases with m%7 (Darveau et al. 2005).
Note that y represents metabolic cost per flower exploited,
not per unit time. In this example, we let

% =0.01 X mo7 (17)
We have been unable to find the relationship between
body size and the last model parameter, average amount of
resources brought to the nest per trip, L. To fit the values
used throughout the paper, we let

L=1.7Xmo4 (18)
With Eq. 14-18, it is possible to calculate the expected
fitness of social and solitary bees of any size, as a function
of the foraging strategy they select. Bees can select a level
of predator exposure, p, or gross food uptake, ¢. A single
choice determines the value of the other parameter of the
foraging strategy (through Eq. 14), and the values of net
food uptake, mortality and eventually fitness. Figure 5
shows the relationship between bee body size, m, and the
optimal foraging strategy, in terms of predator exposure,
mortality, gross and net food uptake. The first point to
notice is that, for any given size, solitary bees select forag-
ing strategies with lower predator exposure and lower gross
food uptake than social bees. In solitary bees, the level of
predator exposure accepted increases monotonically with
body size. However, the level of mortality experienced by
the bees, the product of predator exposure and suscepti-
bility to predation, follows a different pattern. In small
solitary bees, susceptibility is high and mortality increases
with body size, paralleling the increase in predator expo-
sure. Beyond a certain size, however, susceptibility quickly
decreases and mortality starts to decrease with body size
despite the continuous increase in predator exposure.
The pattern is different for social bees. For social bees the
relationship between predator exposure and body size is
concave-up: for small social bees, predator exposure is a
decreasing function of body size, but after a certain value
predator exposure starts increasing, until it reaches the
maximum possible value of 1. Mortality follows a similar
pattern for small and medium-sized social bees, but once
the bees reach the maximum level of exposure mortality
starts to decrease due to the continuous decrease in sus-
ceptibility. Because of the assumed link between predator
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Figure 5. Effect of body size on the optimal foraging strategy of
bees when predator exposure increases with the square of gross
food uptake. (A) Gross (circles) and net (lines) food uptake per
flower for social (solid line, black circle) and solitary (dashed line,
empty circle) bees. (B) Predator exposure (circles) and mortality
(lines) per flower for social (solid line, black circle) and solitary

(dashed line, empty circle) bees.

exposure and food uptake, food uptake follows a similar
pattern to predator exposure.

Discussion

Our models expand those developed by Clark and Dukas
(1994) by explicitly introducing body size in the fitness
functions and by changing some assumptions to more pre-
cisely match life history traits of social and solitary bees. For
social bees, while we still assume that conditions remain con-
stant throughout the season, we remove the assumption of
an infinite season, and associate fitness with the growth rate
of the colony. For solitary bees, we acknowledge that larvae
require a minimum amount of resources to survive and relax
the assumption that females lay eggs at the end of each day.
Despite these differences, we recover the main result of the
CD model: solitary bees should use safer foraging modes
than social bees of the same size.

Fitness is tightly linked to survival of individual bees in
solitary, but not in social species. As a result, there is a range
of environmental conditions under which populations of
social bees are sustainable but those of solitary bees are not.
Incorporating the effect of bee size is not so straightforward.
Equation 8 and 13 tell us that bee populations are only
sustainable when @>kXE X, where k=1 for social

1479



bees and k = 1.44 for solitary bees. This suggests that large
bees require richer or safer environments for their main-
tenance — a result that is not necessarily true. In (p, 0)
phase space the condition for sustainability becomes
0>%+kXEXoXp. Large bees require habitats with
more resources to fulfil their energetic requirements, but
the abundance of predators in the environment will play a
minor role for large (low ) bees, as well as small (low E)
bees. As a result, predators have the potential to make habi-
tats unsuitable for medium-sized bees, but they are unlikely
to play a major role on the spatial distribution of small and
large bees.

Moving beyond the overall comparison between social
and solitary bees, our model also shows that there is a com-
plex interplay between sociality, body size and the preda-
tion-intake trade-off. Thus, while solitary bees should adopt
increasing levels of predator exposure as their size increases,
medium-sized social bees should show lower levels of pred-
ator exposure than small and large social bees (Fig. 5). It
follows that we cannot fully understand how bees dis-
tribute themselves among available resources (Jones 2010)
unless we take into account the difference between social
and solitary bees, and the size of the bees involved. A full
understanding of how large and small bees face the tradeoff
between maximising food uptake and minimising predation,
however, requires detailed knowledge about the relationship
between the different parameter values and body size.

Our models provide a tool to explore the effect of ambush
predators on plant—pollinator relationships. In the present
model, bee foraging strategies are defined by their average
predator exposure and food uptake per flower visit. These
quantities, however, are partially under the control of forag-
ing bees. Suppose that a plant species harbours crab spiders
in 50% of its flowers. A bee visiting every flower it encoun-
ters will be exposed to a spider attack on 50% of the visits,
and this is the underlying assumption of some models (Jones
2010), but this proportion can be reduced substantially if
the bee spends some time inspecting flowers prior to landing
(Ings and Chittka 2008) or if she avoids patches on which
she has been attacked (Ings and Chittka 2009). Indeed, bees
can avoid spider-harbouring flowers (Dukas 2001, Dukas
and Morse 2003, Gongalves-Souza et al. 2008). A bee’s for-
aging strategy determines her average predator exposure and
food uptake per flower, and our models can then be used to
determine the optimal strategy in particular scenarios.

Our models can also be used to explore the effect of pre-
dators on plant—pollinator interactions. The resources a bee
encounters on a flower depend on the flower type, but also
on the behaviour of other pollinators. In this paper, we have
ignored the effect of bee choices on resource availability, but
at the community level it is clear that there is a strong feed-
back between the foraging strategies used by the bees and
the profitability of these strategies (Dreisig 1995). Coupling
these models with game theoretical arguments will allow us
to understand how and if predators affect the topology of
plant—pollinator networks.
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Appendix 1
Senescence

Neukirch (1982) proposed that foraging honeybees have
a set amount of energy that can be spent in foraging activi-
ties, and more recently it has been suggested that the flight
apparatus of bees is only capable of a finite number of
wing beats (Higginson and Gilbert 2004). We can introduce
senescence by assuming that bees posses a fixed foraging
budget, T, which is depleted as bees forage.

Social bees

For social bees, the constraint of a finite maximum foraging
time is most easily introduced in Eq. 4. If mortality per trip,
U, is independent of age but a bee cannot perform more
than N trips in her lifetime, then the number of trips that
the bee is expected to accomplish in her lifetime is

(A1)

. I—u Nimax
Number of trips) = L1—(1— :
(Nambe fvips) =511 ]

t

If maximum foraging time is T and average trip duration
tXL/@, then N =TX¢@/(tXL) in Eq. Al. Using
Eq. Al, rather than (1—p)/M, in the calculation of
(Harvest) and (Lifespan) and substituting in Eq. 4, we obtain:

_ M)T/t] (A2)

Numerical analysis shows that the foraging choices pre-
dicted for social bees with (Eq. A2) and without (Eq. 4)
senescence are virtually identical, for both small and large
bees, even when the foraging budget is just sufficient to rear
two offspring (unpubl.).

Solitary bees
When the maximum number of trips that a bee can possibly
accomplish is restricted by her foraging budget, T (Eq. Al),
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the number of eggs that a solitary bee is expected to lay in
her lifetime becomes

E/e

B ol SN PR
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For large solitary bees, fitness functions with and without
senescence are almost identical. For small solitary bees the
fitness function changes somewhat if the foraging budget
is very small, but the differences disappear when the forag-
ing budget is sufficient for a bee to provision 10 cells. Ten
cells per nesting female is a good average for O. cornuta
females (range: 8.5-17.5; Bosch and Vicens 2005, 2006),
and appears to be a good estimate for C. persimilis females,
which provision 1 to 6 cells per day (Danforth 1990).

(A3)

Appendix 2
Model parameterization

Other than the variables that characterize the foraging
options, @, W and ¢, the models involve three parameters
that depend on the size of the bees: the amount of resources
required to rear an offspring, E; the amount of resources that
bees collect per foraging trip, L, and susceptibility to pre-
dation, G. Ideally, we would want to express these parameters
as functions of body size. Unfortunately, however, we lack
the data to do so. The amount of resources required to rear
an offspring (Bosch and Vicens 2002, Miiller et al. 2006)
and, at least in some species, the amount of resources col-
lected per trip (Tomkins et al. 2001, Goulson et al. 2002)
increase with body size, while susceptibility to predation
decreases with body size (Dukas and Morse 2003, 2005) —
but the shape of these relationships is unknown. Rather
than assuming arbitrary functions for these parameters,
we will study the optimal foraging strategy of bees with dif-
ferent life histories in two scenarios: ‘small’ and ‘large’ bees,
adjusting the parameter values to two well-studied species.
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As an example of small bee we use male Calliopsis persimilis.
In this species, females provision their male eggs with
E=5 mg (dry weight) of pollen and nectar, leading to an
adult body mass of m =2.5 mg, gathered in two foraging
trips (Danforth 1990). The average load per foraging trip
is therefore L=2.5 mg. As an example of large bee we
select female Osmia cornuta (in reality, this species would
be considered medium-sized, but we do not have enough
data to parameterise the model for very large bees, such as

1482

Xylocopa). In O. cornuta, the cost of rearing a female
offspring, with m =150 mg, is E =380 mg (dry weight)
of pollen and nectar, and the load carried to the nest
per foraging trip is L=14 mg (Bosch 1994, Bosch and
Vicens 2002). The reason for choosing male offspring in
C. persimilis and female offspring in O. cornuta is that,
in these species, males are smaller than females. Thus, male
C. persimilis and female O. cornuta provide a wider size
range.



